How do we determine whether a reaction is SN1 or SN2?

Factor #1: Electrophile (substrate). Is the electrophile primary, secondary, or tertiary?

SN2

<table>
<thead>
<tr>
<th>Reaction type</th>
<th>Stereochemistry</th>
<th>Regiochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution (S_N2)</td>
<td>Inversion</td>
<td>Not applicable (nucleophile attacks carbon next to LG)</td>
</tr>
</tbody>
</table>

SN1

<table>
<thead>
<tr>
<th>Reaction type</th>
<th>Stereochemistry</th>
<th>Regiochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution (S_N1)</td>
<td>Racemization</td>
<td>Not applicable (nucleophile attacks carbon next to LG)</td>
</tr>
</tbody>
</table>

LG = Leaving Group
EXERCISE 9.1 Identify whether the following substrate is more likely to participate in an S_N2 or S_N1 reaction.

\[\text{Cl} \]

ANSWER The substrate is primary, so we predict an S_N2 reaction.

PROBLEMS Identify whether each of the following substrates is more likely to participate in an S_N2 or S_N1 reaction.

9.2 \[\text{Br} \] 9.3 \[\text{Cl} \] 9.4 \[\text{Br} \] 9.5 \[\text{I} \]
There is one other way to stabilize a carbocation (other than alkyl groups)—resonance. If a carbocation is resonance stabilized, then it will be easier to form that carbocation:

The carbocation above is stabilized by resonance. Therefore, the LG is willing to leave, and we can have an $S_{N}1$ reaction.

There are two kinds of systems that you should learn to recognize: a LG in a benzylic position and a LG in an allylic position. Compounds like this will be resonance stabilized when the LG leaves:

If you see a double bond near the LG and you are not sure if it is a benzylic or allylic system, just draw the carbocation you would get and see if there are any resonance structures.

EXERCISE 9.6 In the compound below, circle the LGs that are benzylic or allylic:

Answer
PROBLEMS For each compound below, determine whether the LG leaving would form a resonance-stabilized carbocation. If you are not sure, try to draw resonance structures of the carbocation you would get if the leaving group is expelled.

9.7

9.8

9.9

9.10
Factor #2: The Nucleophile

Common Nucleophiles

<table>
<thead>
<tr>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>I^-</td>
<td>F^-</td>
</tr>
<tr>
<td>Br^-</td>
<td>H_2S</td>
</tr>
<tr>
<td>Cl^-</td>
<td>RSH</td>
</tr>
<tr>
<td>OH^-</td>
<td>$\text{N}≡\text{C}^-$</td>
</tr>
</tbody>
</table>

Strong Nucleophiles favor SN2; Weak Nucleophile disfavors SN2 thereby allowing SN1 to compete

EXERCISE 9.11 Identify whether the following nucleophile will favor SN2 or SN1:

![Nucleophile](image)

ANSWER This compound has a sulfur atom with lone pairs. A lone pair on a sulfur atom will be strongly nucleophilic, even without a negative charge, because sulfur is large and highly polarizable. Strong nucleophiles favor SN2 reactions.

PROBLEMS Identify whether each of the following nucleophiles will favor SN2 or SN1.

1. ![Nucleophile](image) Answer: ________
2. ![Nucleophile](image) Answer: ________
3. ![Nucleophile](image) Answer: ________
4. ![Nucleophile](image) Answer: ________
5. ![Nucleophile](image) Answer: ________

1. ![Nucleophile](image) Answer: ________
2. ![Nucleophile](image) Answer: ________
3. ![Nucleophile](image) Answer: ________
Factor 3: Leaving Group

Good leaving groups are typically the conjugate bases of strong acids. In other words, the weaker the basicity of a leaving group, the greater the leaving group.

<table>
<thead>
<tr>
<th>Acid</th>
<th>pKₐ</th>
<th>Conjugate Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongest Acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I⁻ - H</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>Br⁻ - H</td>
<td>-9</td>
<td></td>
</tr>
<tr>
<td>Cl⁻ - H</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td>O⁻ - H</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>H⁻ - O⁻ H</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>weakest acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H⁻ - O⁻ H</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>O⁻ - H</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O⁻ - H</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>H⁻ - N⁻ H</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

The most commonly used leaving groups are halides and sulfonate ions:
EXERCISE 9.18 Identify the leaving group in the following compound:

\[
\text{Cl} \quad \text{----} \quad \text{OH}
\]

ANSWER We have seen that hydroxide is not a good leaving group, because its conjugate acid (H₂O) is not a strong acid. As a result, hydroxide is not a weak base, so it does not function as a leaving group. In contrast, chloride is a good leaving group because its conjugate acid (HCl) is a strong acid. Therefore, chloride is a weak base, so it can serve as a leaving group.

PROBLEMS Identify the best leaving group in each of the following compounds:

9.19

9.20

9.21

9.22

9.23

9.24

9.25 Compare the structures of 3-methoxy-3-methylpentane and 3-iodo-3-methylpentane, and identify which compound is more likely to undergo an Sₙ₁ reaction.

9.26 When 3-ethyl-3-pentanol is treated with excess chloride, no substitution reaction is observed, because hydroxide is a bad leaving group. If you wanted to force an Sₙ₁ reaction, using 3-ethyl-3-pentanol as the substrate, what reagent would you use to change the leaving group into a better leaving group and provide chloride ions at the same time?
Common solvents used in organic chemistry (for now, only focus on the highlighted):

Solvents

Polar Aprotic Solvents
common uses: for S_{N2} reactions

- DMSO: Dimethyl sulfoxide
- DMF: N,N-Dimethylformamide
- HMPA: Hexamethylphosphoramide
- Acetonitrile

Chlorinated Solvents
common uses: free radical reactions, halogenation reactions

- CCl_4: Carbon tetrachloride
- CHCl_3: Chloroform
- CH_2Cl_2: Dichloromethane (Methylene chloride)

Ethers
common uses: Grignard reactions, reactions of organolithiums

- THF: Tetrahydrofuran
- "Ether": Diethyl ether
- DME: Dimethoxymethane

Polar protic solvents
common uses: S_{N1} and E_1 reactions, reactions involving acids and bases

- H_2O: Water
- MeOH: Methanol
- EtOH: Ethanol
- i-PrOH: isopropanol
- t-BuOH: t-butanol
- AcOH: Acetic acid

Hydrocarbon solvents

- Benzene
- Toluene (methylbenzene)
- n-Hexane
- Pentane

EXERCISE 9.27 Predict whether the reaction below will occur via an S_{N2} or an S_{N1} mechanism:

![Reaction Diagram](image)

Answer This reaction utilizes DMSO, which is a polar aprotic solvent, so we expect an S_{N2} reaction even though the substrate is secondary.
Using all four factors:

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Nucleophile</th>
<th>Leaving group</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°—Only S_N2,</td>
<td>Strong—S_N2</td>
<td>Bad—Neither</td>
<td>Polar aprotic—S_N2</td>
</tr>
<tr>
<td>No S_N1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2°—Both</td>
<td>Both</td>
<td>Good—Both</td>
<td>(but more S_N2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3°—Only S_N1,</td>
<td>Weak—S_N1</td>
<td>Excellent—S_N1</td>
<td></td>
</tr>
<tr>
<td>No S_N2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9.29 For the reaction below, look at all of the reagents and conditions, and determine if the reaction will proceed via an S_N2 or an S_N1, or both or neither.

![Chemical structure](attachment:chemical_structure.png)

Answer The substrate is primary, which immediately tells us that it needs to be S_N2. On top of that, we see that we have a strong nucleophile, which also favors S_N2. The LG is good, which doesn’t tell us much. The solvent is not indicated. So, taking everything into account, we predict that the reaction follows an S_N2 mechanism.
PROBLEMS For each reaction below, look at all of the reagents and conditions, and determine if the reaction will proceed via an S_{N}2 or an S_{N}1, or both or neither.

9.30

\begin{align*}
\text{Cl} & \xrightarrow{\text{HO}^\ominus} \xrightarrow{\text{DME}} \\
\end{align*}

9.31

\begin{align*}
\text{Cl} & \xrightarrow{\text{H}_2\text{O}} \\
\end{align*}

9.32

\begin{align*}
\text{O} & \xrightarrow{\text{H}^\ominus\text{-Br}} \\
\end{align*}

9.33

\begin{align*}
\text{OR} & \xrightarrow{\text{H}_2\text{O}} \\
\end{align*}

9.34

\begin{align*}
\text{Br} & \xrightarrow{\text{Cl}^\ominus} \xrightarrow{\text{DMSO}} \\
\end{align*}

9.35

\begin{align*}
\text{O} & \xrightarrow{\text{ROH}} \\
\end{align*}
Chapter 9

9.2] Both
9.3] S_{N2}
9.4] Both
9.5] S_{N1}
9.7] No
9.8] Yes
9.9] No
9.10] Yes
9.12] S_{N2}
9.13] S_{N1}
9.14] S_{N1}
9.15] S_{N2}
9.16] S_{N2}
9.17] S_{N2}
9.19] mesylate
9.20] iodide
9.21] tosylate
9.22] chloride
9.23] bromide
9.24] bromide
9.25] 3-iodo-3-methylpentane
9.26] Use HCl to protonate OH and turn it into an excellent LG
9.30] S_{N2}
9.31] S_{N1}
9.32] S_{N1}
9.33] Neither
9.34] S_{N2}
9.35] S_{N1}